
1Reprinted from C Vu April 2002 / © Mark Cooper

How To Raise The Dead
(And Other Black Arts)
by Mark Cooper 
About 4 years ago, I was a reasonably happy, skilled (in my opinion)
COBOL programmer and system designer. The systems that are designed
and written by the company I currently work for cater solely to a very
specific market sector, and as such there is very little that the expertise
within the company doesn’t know about its target customers and their
problems.

One day, an overpaid consultant bean-counter pointed out to the senior
management and directors of the company that we weren’t actually very
profitable at what we do, and that the marketplace for the software we
produced was changing and leaving us by the wayside. Our software looked
old (pure text-based user interfaces) and was not attractive and sexy enough
to catch the attention of a new breed of customers.

What could we do about it? The software was all written in COBOL,
and despite the best efforts of many software tool companies to enable GUI
capabilities in COBOL systems, we knew that we had other problems,
which were far more deep-rooted. For example, every system we wrote
was bespoke, but drew heavily on code written for previous projects (some
of which were obviously more successful than others) – but we hadn’t used
the same code-base for all systems, so the enhancement and maintenance
of those systems was always a very high-cost affair. In addition, systems
were written without much in the way of design documentation – we didn’t
need it (so we thought) since all of the knowledge required to write a system
was in the heads of the developers! 

Systems were taking too long to write, and even longer to fix afterwards.
We needed a new approach, one that would give us faster to develop, easier
to maintain systems. The company embarked on a 2 year R&D programme
to find the most suitable development tools and methods for a new
generation of software.

During this time I saw ‘the writing on the wall’ for me as a 40 year old
programmer. Whatever the R&D conclusions were going to be, if I
remained as a developer I would have to ‘go back to school’. The
nightmares began – I would wake up sweating in the night from the
aftermath of a dream where I’m in a lecture room with hundreds of kids
with pony-tails and baseball caps calling me ‘dad’ and ‘old man’, laughing
at me as I fail to understand the basics of whatever it is. I then made up my
mind that the only way out for me was to become – a MANAGER. 

So that’s exactly what I did. I landed myself the role of Development
Manager, and for a year or so became blissfully happy not having to worry
about new technology and managed the lives and tasks of about 40 or so
COBOL programmers. 

Meanwhile, in a darkened room in another building, strange things were
afoot. The R&D program had reached the conclusion that some language
bearing a resemblance to C++, but with a name that was something to do
with coffee had won the day and had been chosen as the path forward. I
breathed a sigh of relief, secure in my management capacity that I wouldn’t
have to have anything at all to do with this thing, after all, if it were
anything like C++ the code would be full of curly-brackets and be almost
impossible to read and understand. We had got a couple of C/C++
programmers in the company - we kept them hidden away from ‘normal’
people as they even spoke differently. They used terms like Problem
Domain, Class, Object and Implementation and spoke about such black
arts as design patterns. 

Life continued. Each day my loyal band of COBOL programmers would
do some more coding (for some, unknown reason referred to as
implementing by the warlocks in R&D). Then, the company decided it
would like to actually write a system using this new thing (which I now
knew the name of - Java), and embarked on a PR mission to extoll its
praises to the rest of the company. Oh how I laughed! My COBOL
programmers wouldn’t be interested in this! They wouldn’t know a curly-
bracket if it smacked them in the teeth.

Mysterious things began happening. I got to work one morning to
discover one of my best programmers missing. Someone or something had
kidnapped him over the weekend. I raised the alarm, only to be told that
the traitor had been lured by the powers of the Dark Side, learning Java in
his spare time, and had volunteered for the new pilot project. I was
distraught. I had a pep talk with the remaining programmers, and was even
more surprised to find that several others had been tempted by these dark
forces. Over the next few months I took to counting the empty desks every
morning to find out how many programmers I had left.

One day my manager, the Technical Director of the company drew me
to one side. ‘Aha!’ I thought, ‘He’s finally going to replace my missing
programmers’. Unfortunately, this wasn’t what he had in mind. He told me
that the new project wasn’t going so well, and seemed to lack direction. 

‘Get in there’, he said. ‘Find out what’s going wrong, use your technical
skills, which I’m sure you’ve kept up to date – use your experience!’ I was
crestfallen. How could I tell him that this was as alien to me as a pocket
PC would be to the Dalai Llama!

Reluctantly, I moved out of my cosy private office, into a room full of
trainee sorcerors. I tried to understand. I tried to learn the buzzwords,
discovering for example that everyone hadn’t suddenly had a windfall from
a dead relative, just because they were all talking about inheritance. I even
made half-hearted attempts to use an Object Oriented Design Tool.
Eventually, with much kicking and screaming and gnashing of teeth we
managed to get a system together. We even installed it with a customer,
and it (for the most part) worked. I knew deep down that the system was
written badly, and had been designed (if you could call it that) mainly by
the programmers, who, having nearly all come from a COBOL background
had no idea how to design an OO system.

The company directors saw what they wanted to see, and immediately
began finalising plans for the take up of the new system for other projects.
I had to do something, otherwise I knew we would be no better off than
before. We would still be turning out systems based on a badly written
code-base with little or no design documentation.

I casually mentioned to the technical director that it might be a good
idea to get someone else to look at the system, someone from outside to
offer an unbiased appraisal of what we had achieved. After some weeks of
badgering, I finally convinced him to cross with silver the palm of a highly
trained adept (contract an OO consultant) to cast his scrying bones over
the results of our crafting (review the system).

The guy came in and spent a week looking through the code, the
documentation and the practices we’d used to achieve the system. He and
his scribes conjured forth the Booke of Counted Sorrows (he produced a
bound, 30 page report). It wasn’t all bad, we had after all managed to get
a working system, and by all accounts most software companies embarking
on their first OO system (or indeed any new methodology) end up throwing
it away. The rest of the report was, as I’d suspected, not what the directors
wanted to hear. The report basically recommended that we throw away
much of what had been done, and start from the ground up using the correct
OO design techniques. 

‘Do you understand all of this stuff?’ asked my technical director, having
leafed through the report and seen the implications. I had to admit that I
didn’t. I was immediately enrolled on to an OO design course. This lasted
a week, and although it did take away some of the ‘black art’ mystique
surrounding OO concepts, the course centred mainly on the use of a
particular design tool and wasn’t really what I needed. I was assigned the
task, along with a couple of colleagues of designing a more generic system,
one that could be modular and would be designed for re-use. For some
weeks we laboured at the task, but without a sound understanding of Java
(or any other OO programming language) it was slow going, and I wasn’t
confident that we were approaching it the right way.

About this time, a CV dropped on my desk. This usually happened
whenever the HR manager was away for some reason. This particular CV
had been read by her previously and discarded due mainly to the fact that
the person it described wanted a ludicrously high salary (when compared
with our ‘usual’ rates for developers). I read it several times, and even
visited the guy’s web page to find out more. The chap considered himself
to be mainly a C++ programmer, but confessed to having ‘dabbled’ in Java,
but his main attribute was years of experience in OO. I managed to
convince the technical director that we needed to bring in some new blood.
Someone experienced with the complexities of OO methodologies. He
reluctantly agreed. Then I showed him the CV.

I peeled him off the ceiling a couple of days later, and suggested that
we interviewed the candidate. I was relieved to find that the guy was still
available, and arranged for him to be interviewed not by myself, but by the
technical director and one of the senior developers who was by now our
most experienced Java programmer (he’d been using it for about 6
months!). I was pleasantly surprised when it was announced that the
applicant was successful. As I’d suspected, even though the guy only
professed to have ‘dabbled’ in Java he still knew more about it than any of
our people.

And so it came to pass that some weeks later this wizard arrived in my
office. As befits most practitioners of his arts he seemed of indeterminate



2

age and came attired in his formal sorcerer’s garb – black jeans, black T-
shirt and long hair in a ponytail. When he spoke, he might as well have
been speaking Greek. Still, he seemed to possess an air of knowingness
and a good sense of humour – he even took it in good heart when my
colleagues and I would mimic pulling dunces caps over our heads when
he said something particularly unintelligible. He suggested several weighty
spellbooks for me to read (some of which I did at least flick through).

It took a few weeks, but eventually he managed to grasp the necessary
social skills to speak to us in language we could understand. It couldn’t
have been easy. He seemed as far up the evolutionary scale from us as we
are from pond scum. We began designing the system again. The new guy
was every bit as good as his CV, and we agreed we could see the way
forward. I went on yet another OO design course and things were
progressing nicely. We introduced sound design principles and reviews at
each stage in the design process. We managed to borrow a couple of Java
programmers from the original project and gradually began to introduce
them to the new design techniques and our new architecture.

Then we got a hammer blow. The company board was becoming
disillusioned by the whole project, and needed to see some tangible
evidence that what we were doing was worthwhile. They had to make a
commercial decision whether or not to continue with the project. We were
given a customer prospect, one with a more limited set of requirements
than usual, but for which we could write a system that would be in
essence a cut-down model from the monster we were currently cooking
up. The problem was that there was a ridiculously short timescale and
the customer was particularly adamant about the delivery dates. As an
added ‘incentive’, the customer’s decision as to whether or not to give
us a further squillion pounds worth of work rested solely on our ability
to deliver this first phase, working and on time for October (by now it
was June).

During the project meeting that followed, it became apparent that we
were short of at least 2 developers. We managed to abduct one from another
team (they did notice after some days, but we got away with it). That left
us still one developer short. It was at about this time that someone really
decided to rattle my coffin lid.

‘Why don’t you do some of the implementation’, suggested our new
guy. ‘You really should know more about implementing Java systems
anyway if you want to manage the projects’. I was horrified – me, learn
Java! The mere thought of looking at all of those curly-brackets made me
hyperventilate. To my utter dismay, he had even made the suggestion out
loud, in earshot of other colleagues and the aforementioned technical
director.

‘What a good idea!’ I said, noting the smile of approval on the tech
director’s face, and hiding my panic as well as I could. I was enrolled on
a ‘Java for non-C++ programmers’ course the following week. The first
couple of days passed pretty much in a blur, trying to learn new concepts
like iterators and enumerators, and seeing beautifully constructed
paragraphs of if statements contracted to a single half-line of gibberish.
Things settled down after that, and despite my earlier misgivings I found
that I was getting the ‘feel’ for it. The OO design concepts I’d seen before
from the previous courses suddenly made sense. 

I suppose that I was hoping that during my time away, the urgency of
the project would have dictated that they take another programmer into the
team and that I wouldn’t actually be required to do any coding. Imagine
my dismay then, when I arrived at work on the Monday following my
course to find that I’d actually been assigned some classes to implement.
‘You mean you want me to code those programs?’ I said, clinging limpet-
like to the terminology into which my addled old brain was still firmly
anchored. 

Fortunately for me, the package level and class level design that we’d
done previously meant that all I’d really got to concentrate on was the code
itself, and I even impressed myself by having almost completed my tasks
(as far as I was concerned) pretty much ahead of schedule. As I’ve said
before, someone rattled my coffin lid. Well, then it happened that this same
person (our new OO wizard) tore my coffin lid off its hinges and applied
the lightning rods to my neck-bolts.

‘I see your classes are coming along nicely’, he said, ‘how are you
getting on with their test-harness?’

‘What?’ I said, ‘No-one mentioned a test-harness to me’.
‘Then how do you know it will work then?’ he said, smugly.
‘Because I’ve written the code, and I know it will work!’ I said, equally

smugly. He gave me a look which said ‘You really are pond-scum’, and
the URL of a website for JUnit (a set of classes for Java used for

implementing test-harnesses), and politely suggested that I should read the
information there and then talk to him again. 

Even after reading the JUnit documentation and tutorial, I was still
sceptical that it would apply to us. It was quite obvious that to be useful,
the test-harnesses would be almost as difficult to write as the classes
themselves. I expressed my concerns to the guru, explaining that we just
didn’t have the time to write all that extra code, we would have to rely on
the final system testing. Then he pointed out that if we didn’t have time to
write test harnesses, we certainly didn’t have the time to re-work any
problems later, surely it was better to put the effort in while coding, and
structure the test harnesses in such a way as to only test the critical parts
of each package to ensure that future code additions and modifications
didn’t ‘break’ the build.

Reluctantly, I agreed with him, and proceeded to write a test harness for
my new classes. As I’d surmised, this took me nearly as long as writing the
code, but once I’d done it once and became familiar with the JUnit classes,
further test harnesses became easier to write. The other developers were
almost as difficult to convince as myself, but eventually everyone got into
the idea that no task was complete without a JUnit test harness. Our guru
put together an immensely useful piece of template code around which
most of the tests could be written, and everyone was happy.

Everyone, that is, except the Project Manager and the directors. You
see, also under the guidance of our new wizard, we hadn’t even begun to
write any user interface code. We had taken the approach that it was more
important to get the server-side code written and stable before tackling the
user interfaces. This was completely contrary to everything we were used
to. Project milestones had traditionally been measured by the amount of
visible functionality completed. Non-programmers only see this by the
functions available from the user interface. One week before we were due
to make the first delivery to the customer, nothing was visible. 

I’m reminded here of a wonderful Dilbert cartoon, where he’s standing
in front of an audience of interested parties demonstrating the new
prototype system they are developing. The screen he’s pointing to is blank,
but Dilbert gets away with it by saying “The User Interface hasn’t been
written yet, but if it had you would see a box here (points) and some text
here (points) – and you’d be saying ‘I’ve gotta have me some of that!’”

Despite this, our new OO guy was still confident. I tried to stay calm,
and assured everyone that everything was going to plan, even though I was
by now having serious doubts.

Thankfully, my doubts were unfounded, and the user interfaces required
for the first software delivery were written in next to no time, due to the
fact that all of the hard stuff was being done server side (where it should
be) and worked virtually straight away. Thanks to the JUnit testing, all of
the server code performed extremely well.

The rest of the project went equally well, and although we all had to put
in some long hours, and we scraped a few of the delivery deadlines by a
matter of hours. The customer was extremely happy, due to the excellent
quality of the software (only a few minor problems arose during User
Acceptance Testing). Management was extremely happy due to the timely
release of resource on completion of the project (we needed very few of
the original team to cope with the few bugs we did get). Most of all, the
development team were all extremely happy due to (for once) being given
sufficient design information to be able to do their jobs without constantly
having to resolve issues.

I’ve learned more in the last 9 months than I had previously in 17 years
as a COBOL programmer and 3 as a senior manager. More importantly, I
feel like someone has ‘given me my brain back’, even though I never knew
it was missing in the first place. 

To any 40-something programmer reading this who still has misgivings
about learning something new I can only say this – you may feel like
you’ve become a Junior Programmer again for a while, but if you are like
me (at heart always a programmer) you will get a lot of job satisfaction. I
now get up most mornings, still with aches in my bones, but also with a
spring in my step, because I know that at the end of each day I will be just
that tiny bit wiser than the day before – a feeling I thought I’d lost forever
years ago!

I still can’t understand why OO developers felt the need to invent a
whole new set of terminology for the subject when there was a perfectly
good collection of gibberish already in use, but I suppose it makes sense
to keep the mystique alive – it wouldn’t do for those pesky managers to
understand everything we do – would it?

Mark Cooper 
mark_cooper@bigfoot.com

Reprinted from C Vu April 2002 / © Mark Cooper


